ultralytics 8.2.2 replace COCO128 with COCO8 (#10167)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
626309d221
commit
1110258d37
43 changed files with 154 additions and 156 deletions
|
|
@ -66,13 +66,13 @@ CLI_HELP_MSG = f"""
|
|||
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
|
||||
|
||||
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
|
||||
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
|
||||
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
|
||||
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
|
||||
|
||||
3. Val a pretrained detection model at batch-size 1 and image size 640:
|
||||
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
||||
yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640
|
||||
|
||||
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
||||
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmar
|
|||
|
||||
# Train settings -------------------------------------------------------------------------------------------------------
|
||||
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
||||
data: # (str, optional) path to data file, i.e. coco128.yaml
|
||||
data: # (str, optional) path to data file, i.e. coco8.yaml
|
||||
epochs: 100 # (int) number of epochs to train for
|
||||
time: # (float, optional) number of hours to train for, overrides epochs if supplied
|
||||
patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ To get started, simply browse through the models in this directory and find one
|
|||
Model `*.yaml` files may be used directly in the Command Line Interface (CLI) with a `yolo` command:
|
||||
|
||||
```bash
|
||||
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
|
||||
yolo task=detect mode=train model=yolov8n.yaml data=coco8.yaml epochs=100
|
||||
```
|
||||
|
||||
They may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
|
||||
|
|
@ -22,7 +22,7 @@ from ultralytics import YOLO
|
|||
model = YOLO("model.yaml") # build a YOLOv8n model from scratch
|
||||
# YOLO("model.pt") use pre-trained model if available
|
||||
model.info() # display model information
|
||||
model.train(data="coco128.yaml", epochs=100) # train the model
|
||||
model.train(data="coco8.yaml", epochs=100) # train the model
|
||||
```
|
||||
|
||||
## Pre-trained Model Architectures
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue