ultralytics 8.2.2 replace COCO128 with COCO8 (#10167)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
626309d221
commit
1110258d37
43 changed files with 154 additions and 156 deletions
|
|
@ -42,11 +42,11 @@ YOLOv8 pretrained Detect models are shown here. Detect, Segment and Pose models
|
|||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco8.yaml batch=1 device=0|cpu`
|
||||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! Example
|
||||
|
||||
|
|
@ -61,19 +61,19 @@ Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a ful
|
|||
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
|
||||
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640
|
||||
yolo detect train data=coco8.yaml model=yolov8n.yaml epochs=100 imgsz=640
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
yolo detect train data=coco8.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
|
||||
yolo detect train data=coco8.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
|
@ -82,7 +82,7 @@ YOLO detection dataset format can be found in detail in the [Dataset Guide](../d
|
|||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes.
|
||||
Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! Example
|
||||
|
||||
|
|
|
|||
|
|
@ -42,7 +42,7 @@ YOLOv8 pretrained Segment models are shown here. Detect, Segment and Pose models
|
|||
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco8-seg.yaml batch=1 device=0|cpu`
|
||||
|
||||
## Train
|
||||
|
||||
|
|
@ -61,19 +61,19 @@ Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. F
|
|||
model = YOLO('yolov8n-seg.yaml').load('yolov8n.pt') # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='coco128-seg.yaml', epochs=100, imgsz=640)
|
||||
results = model.train(data='coco8-seg.yaml', epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640
|
||||
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue