ultralytics 8.2.2 replace COCO128 with COCO8 (#10167)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-04-18 20:47:21 -07:00 committed by GitHub
parent 626309d221
commit 1110258d37
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
43 changed files with 154 additions and 156 deletions

View file

@ -161,7 +161,7 @@ The Ultralytics command line interface (CLI) allows for simple single-line comma
Train a detection model for 10 epochs with an initial learning_rate of 0.01
```bash
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01
```
=== "Predict"
@ -175,7 +175,7 @@ The Ultralytics command line interface (CLI) allows for simple single-line comma
Val a pretrained detection model at batch-size 1 and image size 640:
```bash
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640
```
=== "Export"
@ -225,8 +225,8 @@ For example, users can load a model, train it, evaluate its performance on a val
# Load a pretrained YOLO model (recommended for training)
model = YOLO('yolov8n.pt')
# Train the model using the 'coco128.yaml' dataset for 3 epochs
results = model.train(data='coco128.yaml', epochs=3)
# Train the model using the 'coco8.yaml' dataset for 3 epochs
results = model.train(data='coco8.yaml', epochs=3)
# Evaluate the model's performance on the validation set
results = model.val()