ultralytics 8.2.2 replace COCO128 with COCO8 (#10167)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
626309d221
commit
1110258d37
43 changed files with 154 additions and 156 deletions
|
|
@ -261,14 +261,14 @@ To reproduce the Ultralytics benchmarks above on all export [formats](../modes/e
|
|||
# Load a YOLOv8n PyTorch model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
# Benchmark YOLOv8n speed and accuracy on the COCO128 dataset for all all export formats
|
||||
results= model.benchmarks(data='coco128.yaml')
|
||||
# Benchmark YOLOv8n speed and accuracy on the COCO8 dataset for all all export formats
|
||||
results= model.benchmarks(data='coco8.yaml')
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Benchmark YOLOv8n speed and accuracy on the COCO128 dataset for all all export formats
|
||||
yolo benchmark model=yolov8n.pt data=coco128.yaml
|
||||
# Benchmark YOLOv8n speed and accuracy on the COCO8 dataset for all all export formats
|
||||
yolo benchmark model=yolov8n.pt data=coco8.yaml
|
||||
```
|
||||
|
||||
Note that benchmarking results might vary based on the exact hardware and software configuration of a system, as well as the current workload of the system at the time the benchmarks are run. For the most reliable results use a dataset with a large number of images, i.e. `data='coco128.yaml' (128 val images), or `data='coco.yaml'` (5000 val images).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue