ultralytics 8.2.2 replace COCO128 with COCO8 (#10167)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
626309d221
commit
1110258d37
43 changed files with 154 additions and 156 deletions
|
|
@ -74,7 +74,7 @@ yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
|
|||
Train a detection model for 10 epochs with an initial learning_rate of 0.01:
|
||||
|
||||
```bash
|
||||
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
```
|
||||
|
||||
You can find more [instructions to use the Ultralytics CLI here](../quickstart.md#use-ultralytics-with-cli).
|
||||
|
|
@ -131,7 +131,7 @@ from ultralytics import YOLO
|
|||
model = YOLO("yolov8n.pt") # load an official YOLOv8n model
|
||||
|
||||
# Use the model
|
||||
model.train(data="coco128.yaml", epochs=3) # train the model
|
||||
model.train(data="coco8.yaml", epochs=3) # train the model
|
||||
metrics = model.val() # evaluate model performance on the validation set
|
||||
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||
path = model.export(format="onnx") # export the model to ONNX format
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue