Add docs Ultralytics 文档: - zh/index.md (#5871)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
b9b0fd8bf4
commit
0f9f857449
15 changed files with 181 additions and 80 deletions
|
|
@ -267,20 +267,28 @@ class BaseDataset(Dataset):
|
|||
return label
|
||||
|
||||
def build_transforms(self, hyp=None):
|
||||
"""Users can custom augmentations here
|
||||
like:
|
||||
"""
|
||||
Users can customize augmentations here.
|
||||
|
||||
Example:
|
||||
```python
|
||||
if self.augment:
|
||||
# Training transforms
|
||||
return Compose([])
|
||||
else:
|
||||
# Val transforms
|
||||
return Compose([])
|
||||
```
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def get_labels(self):
|
||||
"""Users can custom their own format here.
|
||||
Make sure your output is a list with each element like below:
|
||||
"""
|
||||
Users can customize their own format here.
|
||||
|
||||
Note:
|
||||
Ensure output is a dictionary with the following keys:
|
||||
```python
|
||||
dict(
|
||||
im_file=im_file,
|
||||
shape=shape, # format: (height, width)
|
||||
|
|
@ -291,5 +299,6 @@ class BaseDataset(Dataset):
|
|||
normalized=True, # or False
|
||||
bbox_format="xyxy", # or xywh, ltwh
|
||||
)
|
||||
```
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
|
|
|||
|
|
@ -154,28 +154,40 @@ def verify_image_label(args):
|
|||
|
||||
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1):
|
||||
"""
|
||||
Convert a list of polygons to a binary mask of the specified image size.
|
||||
|
||||
Args:
|
||||
imgsz (tuple): The image size.
|
||||
polygons (list[np.ndarray]): [N, M], N is the number of polygons, M is the number of points(Be divided by 2).
|
||||
color (int): color
|
||||
downsample_ratio (int): downsample ratio
|
||||
imgsz (tuple): The size of the image as (height, width).
|
||||
polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape [N, M], where
|
||||
N is the number of polygons, and M is the number of points such that M % 2 = 0.
|
||||
color (int, optional): The color value to fill in the polygons on the mask. Defaults to 1.
|
||||
downsample_ratio (int, optional): Factor by which to downsample the mask. Defaults to 1.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): A binary mask of the specified image size with the polygons filled in.
|
||||
"""
|
||||
mask = np.zeros(imgsz, dtype=np.uint8)
|
||||
polygons = np.asarray(polygons, dtype=np.int32)
|
||||
polygons = polygons.reshape((polygons.shape[0], -1, 2))
|
||||
cv2.fillPoly(mask, polygons, color=color)
|
||||
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio)
|
||||
# NOTE: fillPoly first then resize is trying to keep the same way of loss calculation when mask-ratio=1.
|
||||
# Note: fillPoly first then resize is trying to keep the same loss calculation method when mask-ratio=1
|
||||
return cv2.resize(mask, (nw, nh))
|
||||
|
||||
|
||||
def polygons2masks(imgsz, polygons, color, downsample_ratio=1):
|
||||
"""
|
||||
Convert a list of polygons to a set of binary masks of the specified image size.
|
||||
|
||||
Args:
|
||||
imgsz (tuple): The image size.
|
||||
polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0)
|
||||
color (int): color
|
||||
downsample_ratio (int): downsample ratio
|
||||
imgsz (tuple): The size of the image as (height, width).
|
||||
polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape [N, M], where
|
||||
N is the number of polygons, and M is the number of points such that M % 2 = 0.
|
||||
color (int): The color value to fill in the polygons on the masks.
|
||||
downsample_ratio (int, optional): Factor by which to downsample each mask. Defaults to 1.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): A set of binary masks of the specified image size with the polygons filled in.
|
||||
"""
|
||||
return np.array([polygon2mask(imgsz, [x.reshape(-1)], color, downsample_ratio) for x in polygons])
|
||||
|
||||
|
|
@ -205,7 +217,7 @@ def find_dataset_yaml(path: Path) -> Path:
|
|||
Find and return the YAML file associated with a Detect, Segment or Pose dataset.
|
||||
|
||||
This function searches for a YAML file at the root level of the provided directory first, and if not found, it
|
||||
performs a recursive search. It prefers YAML files that have the samestem as the provided path. An AssertionError
|
||||
performs a recursive search. It prefers YAML files that have the same stem as the provided path. An AssertionError
|
||||
is raised if no YAML file is found or if multiple YAML files are found.
|
||||
|
||||
Args:
|
||||
|
|
@ -438,7 +450,8 @@ class HUBDatasetStats:
|
|||
self.stats = {'nc': len(data['names']), 'names': list(data['names'].values())} # statistics dictionary
|
||||
self.data = data
|
||||
|
||||
def _unzip(self, path):
|
||||
@staticmethod
|
||||
def _unzip(path):
|
||||
"""Unzip data.zip."""
|
||||
if not str(path).endswith('.zip'): # path is data.yaml
|
||||
return False, None, path
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue