General trainer cleanup (#147)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia 2023-01-07 19:25:48 +05:30 committed by GitHub
parent f8a13c49a0
commit 0e5a7ae623
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 196 additions and 60 deletions

View file

@ -1,7 +1,7 @@
from pathlib import Path
from ultralytics import yolo # noqa
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, yaml_load
@ -45,8 +45,8 @@ class YOLO:
self.trainer = None # trainer object
self.task = None # task type
self.ckpt = None # if loaded from *.pt
self.ckpt_path = None
self.cfg = None # if loaded from *.yaml
self.ckpt_path = None
self.overrides = {} # overrides for trainer object
# Load or create new YOLO model
@ -78,7 +78,7 @@ class YOLO:
Args:
weights (str): model checkpoint to be loaded
"""
self.model = attempt_load_weights(weights)
self.model, self.ckpt = attempt_load_one_weight(weights)
self.ckpt_path = weights
self.task = self.model.args["task"]
self.overrides = self.model.args
@ -188,14 +188,14 @@ class YOLO:
overrides["mode"] = "train"
if not overrides.get("data"):
raise AttributeError("dataset not provided! Please define `data` in config.yaml or pass as an argument.")
if overrides.get("resume"):
overrides["resume"] = self.ckpt_path
self.trainer = self.TrainerClass(overrides=overrides)
if not overrides.get("resume"):
self.trainer.model = self.trainer.load_model(weights=self.model,
model_cfg=self.model.yaml if self.task != "classify" else None)
self.model = self.trainer.model # override here to save memory
if not overrides.get("resume"): # manually set model only if not resuming
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None,
cfg=self.model.yaml if self.task != "classify" else None)
self.model = self.trainer.model
self.trainer.train()