Update HTTP to HTTPS (#7548)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
83165ffe9c
commit
0da13831cf
47 changed files with 62 additions and 62 deletions
|
|
@ -133,7 +133,7 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
|
|||
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
|
||||
|
||||
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。 <br>通过 `yolo val detect data=coco.yaml device=0` 复现
|
||||
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](https://cocodataset.org) 数据集上的结果。 <br>通过 `yolo val detect data=coco.yaml device=0` 复现
|
||||
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。 <br>通过 `yolo val detect data=coco.yaml batch=1 device=0|cpu` 复现
|
||||
|
||||
</details>
|
||||
|
|
@ -167,7 +167,7 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
|
|||
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
||||
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
|
||||
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。 <br>通过 `yolo val segment data=coco-seg.yaml device=0` 复现
|
||||
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](https://cocodataset.org) 数据集上的结果。 <br>通过 `yolo val segment data=coco-seg.yaml device=0` 复现
|
||||
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。 <br>通过 `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu` 复现
|
||||
|
||||
</details>
|
||||
|
|
@ -185,7 +185,7 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
|
|||
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
|
||||
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
|
||||
|
||||
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO Keypoints val2017](http://cocodataset.org) 数据集上的结果。 <br>通过 `yolo val pose data=coco-pose.yaml device=0` 复现
|
||||
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO Keypoints val2017](https://cocodataset.org) 数据集上的结果。 <br>通过 `yolo val pose data=coco-pose.yaml device=0` 复现
|
||||
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。 <br>通过 `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu` 复现
|
||||
|
||||
</details>
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue