updated the amount of macros available in the macros folder (#16086)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Francesco Mattioli <Francesco.mttl@gmail.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
MatthewNoyce 2024-09-09 22:49:44 +01:00 committed by GitHub
parent fbc6bae5af
commit 090db8ac3f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
20 changed files with 144 additions and 350 deletions

View file

@ -79,22 +79,7 @@ Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need t
When validating YOLO models, several arguments can be fine-tuned to optimize the evaluation process. These arguments control aspects such as input image size, batch processing, and performance thresholds. Below is a detailed breakdown of each argument to help you customize your validation settings effectively.
| Argument | Type | Default | Description |
| ------------- | ------- | ------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `data` | `str` | `None` | Specifies the path to the dataset configuration file (e.g., `coco8.yaml`). This file includes paths to validation data, class names, and number of classes. |
| `imgsz` | `int` | `640` | Defines the size of input images. All images are resized to this dimension before processing. |
| `batch` | `int` | `16` | Sets the number of images per batch. Use `-1` for AutoBatch, which automatically adjusts based on GPU memory availability. |
| `save_json` | `bool` | `False` | If `True`, saves the results to a JSON file for further analysis or integration with other tools. |
| `save_hybrid` | `bool` | `False` | If `True`, saves a hybrid version of labels that combines original annotations with additional model predictions. |
| `conf` | `float` | `0.001` | Sets the minimum confidence threshold for detections. Detections with confidence below this threshold are discarded. |
| `iou` | `float` | `0.6` | Sets the Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Helps in reducing duplicate detections. |
| `max_det` | `int` | `300` | Limits the maximum number of detections per image. Useful in dense scenes to prevent excessive detections. |
| `half` | `bool` | `True` | Enables half-precision (FP16) computation, reducing memory usage and potentially increasing speed with minimal impact on accuracy. |
| `device` | `str` | `None` | Specifies the device for validation (`cpu`, `cuda:0`, etc.). Allows flexibility in utilizing CPU or GPU resources. |
| `dnn` | `bool` | `False` | If `True`, uses the OpenCV DNN module for ONNX model inference, offering an alternative to PyTorch inference methods. |
| `plots` | `bool` | `False` | When set to `True`, generates and saves plots of predictions versus ground truth for visual evaluation of the model's performance. |
| `rect` | `bool` | `False` | If `True`, uses rectangular inference for batching, reducing padding and potentially increasing speed and efficiency. |
| `split` | `str` | `val` | Determines the dataset split to use for validation (`val`, `test`, or `train`). Allows flexibility in choosing the data segment for performance evaluation. |
{% include "macros/validation-args.md" %}
Each of these settings plays a vital role in the validation process, allowing for a customizable and efficient evaluation of YOLO models. Adjusting these parameters according to your specific needs and resources can help achieve the best balance between accuracy and performance.