ultralytics 8.0.235 YOLOv8 OBB train, val, predict and export (#4499)
Co-authored-by: Yash Khurana <ykhurana6@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Swamita Gupta <swamita2001@gmail.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Laughing-q <1182102784@qq.com>
This commit is contained in:
parent
f702b34a50
commit
072291bc78
52 changed files with 2090 additions and 524 deletions
187
ultralytics/models/yolo/obb/val.py
Normal file
187
ultralytics/models/yolo/obb/val.py
Normal file
|
|
@ -0,0 +1,187 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.models.yolo.detect import DetectionValidator
|
||||
from ultralytics.utils import LOGGER, ops
|
||||
from ultralytics.utils.metrics import OBBMetrics, batch_probiou
|
||||
from ultralytics.utils.plotting import output_to_rotated_target, plot_images
|
||||
|
||||
|
||||
class OBBValidator(DetectionValidator):
|
||||
"""
|
||||
A class extending the DetectionValidator class for validation based on an Oriented Bounding Box (OBB) model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.models.yolo.obb import OBBValidator
|
||||
|
||||
args = dict(model='yolov8n-obb.pt', data='coco8-seg.yaml')
|
||||
validator = OBBValidator(args=args)
|
||||
validator(model=args['model'])
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||||
"""Initialize OBBValidator and set task to 'obb', metrics to OBBMetrics."""
|
||||
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||
self.args.task = 'obb'
|
||||
self.metrics = OBBMetrics(save_dir=self.save_dir, plot=True, on_plot=self.on_plot)
|
||||
|
||||
def init_metrics(self, model):
|
||||
"""Initialize evaluation metrics for YOLO."""
|
||||
super().init_metrics(model)
|
||||
val = self.data.get(self.args.split, '') # validation path
|
||||
self.is_dota = isinstance(val, str) and 'DOTA' in val # is COCO
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
return ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
nc=self.nc,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
rotated=True)
|
||||
|
||||
def _process_batch(self, detections, gt_bboxes, gt_cls):
|
||||
"""
|
||||
Return correct prediction matrix.
|
||||
|
||||
Args:
|
||||
detections (torch.Tensor): Tensor of shape [N, 6] representing detections.
|
||||
Each detection is of the format: x1, y1, x2, y2, conf, class.
|
||||
labels (torch.Tensor): Tensor of shape [M, 5] representing labels.
|
||||
Each label is of the format: class, x1, y1, x2, y2.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels.
|
||||
"""
|
||||
iou = batch_probiou(gt_bboxes, torch.cat([detections[:, :4], detections[:, -2:-1]], dim=-1))
|
||||
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
||||
|
||||
def _prepare_batch(self, si, batch):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx].squeeze(-1)
|
||||
bbox = batch['bboxes'][idx]
|
||||
ori_shape = batch['ori_shape'][si]
|
||||
imgsz = batch['img'].shape[2:]
|
||||
ratio_pad = batch['ratio_pad'][si]
|
||||
if len(cls):
|
||||
bbox[..., :4].mul_(torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]]) # target boxes
|
||||
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad, xywh=True) # native-space labels
|
||||
prepared_batch = dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
|
||||
return prepared_batch
|
||||
|
||||
def _prepare_pred(self, pred, pbatch):
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(pbatch['imgsz'], predn[:, :4], pbatch['ori_shape'], ratio_pad=pbatch['ratio_pad'],
|
||||
xywh=True) # native-space pred
|
||||
return predn
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots predicted bounding boxes on input images and saves the result."""
|
||||
plot_images(batch['img'],
|
||||
*output_to_rotated_target(preds, max_det=self.args.max_det),
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot) # pred
|
||||
|
||||
def pred_to_json(self, predn, filename):
|
||||
"""Serialize YOLO predictions to COCO json format."""
|
||||
stem = Path(filename).stem
|
||||
image_id = int(stem) if stem.isnumeric() else stem
|
||||
rbox = torch.cat([predn[:, :4], predn[:, -1:]], dim=-1)
|
||||
poly = ops.xywhr2xyxyxyxy(rbox).view(-1, 8)
|
||||
for i, (r, b) in enumerate(zip(rbox.tolist(), poly.tolist())):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(predn[i, 5].item())],
|
||||
'score': round(predn[i, 4].item(), 5),
|
||||
'rbox': [round(x, 3) for x in r],
|
||||
'poly': [round(x, 3) for x in b]})
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Evaluates YOLO output in JSON format and returns performance statistics."""
|
||||
if self.args.save_json and self.is_dota and len(self.jdict):
|
||||
import json
|
||||
import re
|
||||
from collections import defaultdict
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
pred_txt = self.save_dir / 'predictions_txt' # predictions
|
||||
pred_txt.mkdir(parents=True, exist_ok=True)
|
||||
data = json.load(open(pred_json))
|
||||
# Save split results
|
||||
LOGGER.info(f'Saving predictions with DOTA format to {str(pred_txt)}...')
|
||||
for d in data:
|
||||
image_id = d['image_id']
|
||||
score = d['score']
|
||||
classname = self.names[d['category_id']].replace(' ', '-')
|
||||
|
||||
lines = '{} {} {} {} {} {} {} {} {} {}\n'.format(
|
||||
image_id,
|
||||
score,
|
||||
d['poly'][0],
|
||||
d['poly'][1],
|
||||
d['poly'][2],
|
||||
d['poly'][3],
|
||||
d['poly'][4],
|
||||
d['poly'][5],
|
||||
d['poly'][6],
|
||||
d['poly'][7],
|
||||
)
|
||||
with open(str(pred_txt / f'Task1_{classname}') + '.txt', 'a') as f:
|
||||
f.writelines(lines)
|
||||
# Save merged results, this could result slightly lower map than using official merging script,
|
||||
# because of the probiou calculation.
|
||||
pred_merged_txt = self.save_dir / 'predictions_merged_txt' # predictions
|
||||
pred_merged_txt.mkdir(parents=True, exist_ok=True)
|
||||
merged_results = defaultdict(list)
|
||||
LOGGER.info(f'Saving merged predictions with DOTA format to {str(pred_merged_txt)}...')
|
||||
for d in data:
|
||||
image_id = d['image_id'].split('__')[0]
|
||||
pattern = re.compile(r'\d+___\d+')
|
||||
x, y = (int(c) for c in re.findall(pattern, d['image_id'])[0].split('___'))
|
||||
bbox, score, cls = d['rbox'], d['score'], d['category_id']
|
||||
bbox[0] += x
|
||||
bbox[1] += y
|
||||
bbox.extend([score, cls])
|
||||
merged_results[image_id].append(bbox)
|
||||
for image_id, bbox in merged_results.items():
|
||||
bbox = torch.tensor(bbox)
|
||||
max_wh = torch.max(bbox[:, :2]).item() * 2
|
||||
c = bbox[:, 6:7] * max_wh # classes
|
||||
scores = bbox[:, 5] # scores
|
||||
b = bbox[:, :5].clone()
|
||||
b[:, :2] += c
|
||||
# 0.3 could get results close to the ones from official merging script, even slightly better.
|
||||
i = ops.nms_rotated(b, scores, 0.3)
|
||||
bbox = bbox[i]
|
||||
|
||||
b = ops.xywhr2xyxyxyxy(bbox[:, :5]).view(-1, 8)
|
||||
for x in torch.cat([b, bbox[:, 5:7]], dim=-1).tolist():
|
||||
classname = self.names[int(x[-1])].replace(' ', '-')
|
||||
poly = [round(i, 3) for i in x[:-2]]
|
||||
score = round(x[-2], 3)
|
||||
|
||||
lines = '{} {} {} {} {} {} {} {} {} {}\n'.format(
|
||||
image_id,
|
||||
score,
|
||||
poly[0],
|
||||
poly[1],
|
||||
poly[2],
|
||||
poly[3],
|
||||
poly[4],
|
||||
poly[5],
|
||||
poly[6],
|
||||
poly[7],
|
||||
)
|
||||
with open(str(pred_merged_txt / f'Task1_{classname}') + '.txt', 'a') as f:
|
||||
f.writelines(lines)
|
||||
|
||||
return stats
|
||||
Loading…
Add table
Add a link
Reference in a new issue