ultralytics 8.0.235 YOLOv8 OBB train, val, predict and export (#4499)
Co-authored-by: Yash Khurana <ykhurana6@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Swamita Gupta <swamita2001@gmail.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Laughing-q <1182102784@qq.com>
This commit is contained in:
parent
f702b34a50
commit
072291bc78
52 changed files with 2090 additions and 524 deletions
51
ultralytics/models/yolo/obb/predict.py
Normal file
51
ultralytics/models/yolo/obb/predict.py
Normal file
|
|
@ -0,0 +1,51 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.engine.results import Results
|
||||
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
||||
from ultralytics.utils import DEFAULT_CFG, ops
|
||||
|
||||
|
||||
class OBBPredictor(DetectionPredictor):
|
||||
"""
|
||||
A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.utils import ASSETS
|
||||
from ultralytics.models.yolo.obb import OBBPredictor
|
||||
|
||||
args = dict(model='yolov8n-obb.pt', source=ASSETS)
|
||||
predictor = OBBPredictor(overrides=args)
|
||||
predictor.predict_cli()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'obb'
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Post-processes predictions and returns a list of Results objects."""
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
nc=len(self.model.names),
|
||||
classes=self.args.classes,
|
||||
rotated=True)
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
orig_img = orig_imgs[i]
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape, xywh=True)
|
||||
img_path = self.batch[0][i]
|
||||
# xywh, r, conf, cls
|
||||
obb = torch.cat([pred[:, :4], pred[:, -1:], pred[:, 4:6]], dim=-1)
|
||||
results.append(Results(orig_img, path=img_path, names=self.model.names, obb=obb))
|
||||
return results
|
||||
Loading…
Add table
Add a link
Reference in a new issue