ultralytics 8.0.235 YOLOv8 OBB train, val, predict and export (#4499)
Co-authored-by: Yash Khurana <ykhurana6@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Swamita Gupta <swamita2001@gmail.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Laughing-q <1182102784@qq.com>
This commit is contained in:
parent
f702b34a50
commit
072291bc78
52 changed files with 2090 additions and 524 deletions
|
|
@ -70,7 +70,7 @@ class DetectionValidator(BaseValidator):
|
|||
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf)
|
||||
self.seen = 0
|
||||
self.jdict = []
|
||||
self.stats = []
|
||||
self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[])
|
||||
|
||||
def get_desc(self):
|
||||
"""Return a formatted string summarizing class metrics of YOLO model."""
|
||||
|
|
@ -86,51 +86,68 @@ class DetectionValidator(BaseValidator):
|
|||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det)
|
||||
|
||||
def _prepare_batch(self, si, batch):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx].squeeze(-1)
|
||||
bbox = batch['bboxes'][idx]
|
||||
ori_shape = batch['ori_shape'][si]
|
||||
imgsz = batch['img'].shape[2:]
|
||||
ratio_pad = batch['ratio_pad'][si]
|
||||
if len(cls):
|
||||
bbox = ops.xywh2xyxy(bbox) * torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]] # target boxes
|
||||
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad) # native-space labels
|
||||
prepared_batch = dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
|
||||
return prepared_batch
|
||||
|
||||
def _prepare_pred(self, pred, pbatch):
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(pbatch['imgsz'], predn[:, :4], pbatch['ori_shape'],
|
||||
ratio_pad=pbatch['ratio_pad']) # native-space pred
|
||||
return predn
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Metrics."""
|
||||
for si, pred in enumerate(preds):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx]
|
||||
bbox = batch['bboxes'][idx]
|
||||
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = batch['ori_shape'][si]
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
|
||||
npr = len(pred)
|
||||
stat = dict(conf=torch.zeros(0, device=self.device),
|
||||
pred_cls=torch.zeros(0, device=self.device),
|
||||
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device))
|
||||
pbatch = self._prepare_batch(si, batch)
|
||||
cls, bbox = pbatch.pop('cls'), pbatch.pop('bbox')
|
||||
nl = len(cls)
|
||||
stat['target_cls'] = cls
|
||||
if npr == 0:
|
||||
if nl:
|
||||
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||||
for k in self.stats.keys():
|
||||
self.stats[k].append(stat[k])
|
||||
# TODO: obb has not supported confusion_matrix yet.
|
||||
if self.args.plots and self.args.task != 'obb':
|
||||
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
|
||||
continue
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space pred
|
||||
predn = self._prepare_pred(pred, pbatch)
|
||||
stat['conf'] = predn[:, 4]
|
||||
stat['pred_cls'] = predn[:, 5]
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
height, width = batch['img'].shape[2:]
|
||||
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
|
||||
(width, height, width, height), device=self.device) # target boxes
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space labels
|
||||
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||
correct_bboxes = self._process_batch(predn, labelsn)
|
||||
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
|
||||
stat['tp'] = self._process_batch(predn, bbox, cls)
|
||||
# TODO: obb has not supported confusion_matrix yet.
|
||||
if self.args.plots and self.args.task != 'obb':
|
||||
self.confusion_matrix.process_batch(predn, bbox, cls)
|
||||
for k in self.stats.keys():
|
||||
self.stats[k].append(stat[k])
|
||||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(predn, batch['im_file'][si])
|
||||
if self.args.save_txt:
|
||||
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
|
||||
self.save_one_txt(predn, self.args.save_conf, shape, file)
|
||||
self.save_one_txt(predn, self.args.save_conf, pbatch['ori_shape'], file)
|
||||
|
||||
def finalize_metrics(self, *args, **kwargs):
|
||||
"""Set final values for metrics speed and confusion matrix."""
|
||||
|
|
@ -139,10 +156,11 @@ class DetectionValidator(BaseValidator):
|
|||
|
||||
def get_stats(self):
|
||||
"""Returns metrics statistics and results dictionary."""
|
||||
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
|
||||
if len(stats) and stats[0].any():
|
||||
self.metrics.process(*stats)
|
||||
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
|
||||
stats = {k: torch.cat(v, 0).cpu().numpy() for k, v in self.stats.items()} # to numpy
|
||||
if len(stats) and stats['tp'].any():
|
||||
self.metrics.process(**stats)
|
||||
self.nt_per_class = np.bincount(stats['target_cls'].astype(int),
|
||||
minlength=self.nc) # number of targets per class
|
||||
return self.metrics.results_dict
|
||||
|
||||
def print_results(self):
|
||||
|
|
@ -165,7 +183,7 @@ class DetectionValidator(BaseValidator):
|
|||
normalize=normalize,
|
||||
on_plot=self.on_plot)
|
||||
|
||||
def _process_batch(self, detections, labels):
|
||||
def _process_batch(self, detections, gt_bboxes, gt_cls):
|
||||
"""
|
||||
Return correct prediction matrix.
|
||||
|
||||
|
|
@ -178,8 +196,8 @@ class DetectionValidator(BaseValidator):
|
|||
Returns:
|
||||
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels.
|
||||
"""
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
return self.match_predictions(detections[:, 5], labels[:, 0], iou)
|
||||
iou = box_iou(gt_bboxes, detections[:, :4])
|
||||
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
||||
|
||||
def build_dataset(self, img_path, mode='val', batch=None):
|
||||
"""
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue