ultralytics 8.0.235 YOLOv8 OBB train, val, predict and export (#4499)
Co-authored-by: Yash Khurana <ykhurana6@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Swamita Gupta <swamita2001@gmail.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Laughing-q <1182102784@qq.com>
This commit is contained in:
parent
f702b34a50
commit
072291bc78
52 changed files with 2090 additions and 524 deletions
|
|
@ -1,7 +1,5 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.data import YOLODataset
|
||||
|
|
@ -22,7 +20,7 @@ class RTDETRDataset(YOLODataset):
|
|||
|
||||
def __init__(self, *args, data=None, **kwargs):
|
||||
"""Initialize the RTDETRDataset class by inheriting from the YOLODataset class."""
|
||||
super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs)
|
||||
super().__init__(*args, data=data, **kwargs)
|
||||
|
||||
# NOTE: add stretch version load_image for RTDETR mosaic
|
||||
def load_image(self, i, rect_mode=False):
|
||||
|
|
@ -108,47 +106,22 @@ class RTDETRValidator(DetectionValidator):
|
|||
|
||||
return outputs
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Metrics."""
|
||||
for si, pred in enumerate(preds):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx]
|
||||
bbox = batch['bboxes'][idx]
|
||||
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = batch['ori_shape'][si]
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
def _prepare_batch(self, si, batch):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx].squeeze(-1)
|
||||
bbox = batch['bboxes'][idx]
|
||||
ori_shape = batch['ori_shape'][si]
|
||||
imgsz = batch['img'].shape[2:]
|
||||
ratio_pad = batch['ratio_pad'][si]
|
||||
if len(cls):
|
||||
bbox = ops.xywh2xyxy(bbox) # target boxes
|
||||
bbox[..., [0, 2]] *= ori_shape[1] # native-space pred
|
||||
bbox[..., [1, 3]] *= ori_shape[0] # native-space pred
|
||||
prepared_batch = dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
|
||||
return prepared_batch
|
||||
|
||||
if npr == 0:
|
||||
if nl:
|
||||
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||||
continue
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
predn[..., [0, 2]] *= shape[1] / self.args.imgsz # native-space pred
|
||||
predn[..., [1, 3]] *= shape[0] / self.args.imgsz # native-space pred
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
tbox = ops.xywh2xyxy(bbox) # target boxes
|
||||
tbox[..., [0, 2]] *= shape[1] # native-space pred
|
||||
tbox[..., [1, 3]] *= shape[0] # native-space pred
|
||||
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||
# NOTE: To get correct metrics, the inputs of `_process_batch` should always be float32 type.
|
||||
correct_bboxes = self._process_batch(predn.float(), labelsn)
|
||||
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
|
||||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(predn, batch['im_file'][si])
|
||||
if self.args.save_txt:
|
||||
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
|
||||
self.save_one_txt(predn, self.args.save_conf, shape, file)
|
||||
def _prepare_pred(self, pred, pbatch):
|
||||
predn = pred.clone()
|
||||
predn[..., [0, 2]] *= pbatch['ori_shape'][1] / self.args.imgsz # native-space pred
|
||||
predn[..., [1, 3]] *= pbatch['ori_shape'][0] / self.args.imgsz # native-space pred
|
||||
return predn.float()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue