ultralytics 8.0.235 YOLOv8 OBB train, val, predict and export (#4499)
Co-authored-by: Yash Khurana <ykhurana6@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Swamita Gupta <swamita2001@gmail.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Laughing-q <1182102784@qq.com>
This commit is contained in:
parent
f702b34a50
commit
072291bc78
52 changed files with 2090 additions and 524 deletions
|
|
@ -11,6 +11,7 @@ import torchvision
|
|||
from PIL import Image
|
||||
|
||||
from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM, colorstr, is_dir_writeable
|
||||
from ultralytics.utils.ops import resample_segments
|
||||
|
||||
from .augment import Compose, Format, Instances, LetterBox, classify_augmentations, classify_transforms, v8_transforms
|
||||
from .base import BaseDataset
|
||||
|
|
@ -26,17 +27,17 @@ class YOLODataset(BaseDataset):
|
|||
|
||||
Args:
|
||||
data (dict, optional): A dataset YAML dictionary. Defaults to None.
|
||||
use_segments (bool, optional): If True, segmentation masks are used as labels. Defaults to False.
|
||||
use_keypoints (bool, optional): If True, keypoints are used as labels. Defaults to False.
|
||||
task (str): An explicit arg to point current task, Defaults to 'detect'.
|
||||
|
||||
Returns:
|
||||
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
|
||||
def __init__(self, *args, data=None, task='detect', **kwargs):
|
||||
"""Initializes the YOLODataset with optional configurations for segments and keypoints."""
|
||||
self.use_segments = use_segments
|
||||
self.use_keypoints = use_keypoints
|
||||
self.use_segments = task == 'segment'
|
||||
self.use_keypoints = task == 'pose'
|
||||
self.use_obb = task == 'obb'
|
||||
self.data = data
|
||||
assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.'
|
||||
super().__init__(*args, **kwargs)
|
||||
|
|
@ -148,6 +149,7 @@ class YOLODataset(BaseDataset):
|
|||
normalize=True,
|
||||
return_mask=self.use_segments,
|
||||
return_keypoint=self.use_keypoints,
|
||||
return_obb=self.use_obb,
|
||||
batch_idx=True,
|
||||
mask_ratio=hyp.mask_ratio,
|
||||
mask_overlap=hyp.overlap_mask))
|
||||
|
|
@ -165,10 +167,19 @@ class YOLODataset(BaseDataset):
|
|||
# NOTE: cls is not with bboxes now, classification and semantic segmentation need an independent cls label
|
||||
# We can make it also support classification and semantic segmentation by add or remove some dict keys there.
|
||||
bboxes = label.pop('bboxes')
|
||||
segments = label.pop('segments')
|
||||
segments = label.pop('segments', [])
|
||||
keypoints = label.pop('keypoints', None)
|
||||
bbox_format = label.pop('bbox_format')
|
||||
normalized = label.pop('normalized')
|
||||
|
||||
# NOTE: do NOT resample oriented boxes
|
||||
segment_resamples = 100 if self.use_obb else 1000
|
||||
if len(segments) > 0:
|
||||
# list[np.array(1000, 2)] * num_samples
|
||||
# (N, 1000, 2)
|
||||
segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0)
|
||||
else:
|
||||
segments = np.zeros((0, segment_resamples, 2), dtype=np.float32)
|
||||
label['instances'] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
|
||||
return label
|
||||
|
||||
|
|
@ -182,7 +193,7 @@ class YOLODataset(BaseDataset):
|
|||
value = values[i]
|
||||
if k == 'img':
|
||||
value = torch.stack(value, 0)
|
||||
if k in ['masks', 'keypoints', 'bboxes', 'cls']:
|
||||
if k in ['masks', 'keypoints', 'bboxes', 'cls', 'segments', 'obb']:
|
||||
value = torch.cat(value, 0)
|
||||
new_batch[k] = value
|
||||
new_batch['batch_idx'] = list(new_batch['batch_idx'])
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue