ultralytics 8.0.235 YOLOv8 OBB train, val, predict and export (#4499)

Co-authored-by: Yash Khurana <ykhurana6@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Swamita Gupta <swamita2001@gmail.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Laughing-q <1182102784@qq.com>
This commit is contained in:
Glenn Jocher 2024-01-05 03:00:26 +01:00 committed by GitHub
parent f702b34a50
commit 072291bc78
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
52 changed files with 2090 additions and 524 deletions

View file

@ -13,7 +13,7 @@ from ultralytics.utils import LOGGER, colorstr
from ultralytics.utils.checks import check_version
from ultralytics.utils.instance import Instances
from ultralytics.utils.metrics import bbox_ioa
from ultralytics.utils.ops import segment2box
from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr
from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13
from .utils import polygons2masks, polygons2masks_overlap
@ -485,6 +485,8 @@ class RandomPerspective:
xy = xy[:, :2] / xy[:, 2:3]
segments = xy.reshape(n, -1, 2)
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3])
segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4])
return bboxes, segments
def apply_keypoints(self, keypoints, M):
@ -891,6 +893,7 @@ class Format:
normalize=True,
return_mask=False,
return_keypoint=False,
return_obb=False,
mask_ratio=4,
mask_overlap=True,
batch_idx=True):
@ -899,6 +902,7 @@ class Format:
self.normalize = normalize
self.return_mask = return_mask # set False when training detection only
self.return_keypoint = return_keypoint
self.return_obb = return_obb
self.mask_ratio = mask_ratio
self.mask_overlap = mask_overlap
self.batch_idx = batch_idx # keep the batch indexes
@ -928,6 +932,9 @@ class Format:
labels['bboxes'] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
if self.return_keypoint:
labels['keypoints'] = torch.from_numpy(instances.keypoints)
if self.return_obb:
labels['bboxes'] = xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(
instances.segments) else torch.zeros((0, 5))
# Then we can use collate_fn
if self.batch_idx:
labels['batch_idx'] = torch.zeros(nl)

View file

@ -89,8 +89,7 @@ def build_yolo_dataset(cfg, img_path, batch, data, mode='train', rect=False, str
stride=int(stride),
pad=0.0 if mode == 'train' else 0.5,
prefix=colorstr(f'{mode}: '),
use_segments=cfg.task == 'segment',
use_keypoints=cfg.task == 'pose',
task=cfg.task,
classes=cfg.classes,
data=data,
fraction=cfg.fraction if mode == 'train' else 1.0)

View file

@ -11,6 +11,7 @@ import torchvision
from PIL import Image
from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM, colorstr, is_dir_writeable
from ultralytics.utils.ops import resample_segments
from .augment import Compose, Format, Instances, LetterBox, classify_augmentations, classify_transforms, v8_transforms
from .base import BaseDataset
@ -26,17 +27,17 @@ class YOLODataset(BaseDataset):
Args:
data (dict, optional): A dataset YAML dictionary. Defaults to None.
use_segments (bool, optional): If True, segmentation masks are used as labels. Defaults to False.
use_keypoints (bool, optional): If True, keypoints are used as labels. Defaults to False.
task (str): An explicit arg to point current task, Defaults to 'detect'.
Returns:
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
"""
def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
def __init__(self, *args, data=None, task='detect', **kwargs):
"""Initializes the YOLODataset with optional configurations for segments and keypoints."""
self.use_segments = use_segments
self.use_keypoints = use_keypoints
self.use_segments = task == 'segment'
self.use_keypoints = task == 'pose'
self.use_obb = task == 'obb'
self.data = data
assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.'
super().__init__(*args, **kwargs)
@ -148,6 +149,7 @@ class YOLODataset(BaseDataset):
normalize=True,
return_mask=self.use_segments,
return_keypoint=self.use_keypoints,
return_obb=self.use_obb,
batch_idx=True,
mask_ratio=hyp.mask_ratio,
mask_overlap=hyp.overlap_mask))
@ -165,10 +167,19 @@ class YOLODataset(BaseDataset):
# NOTE: cls is not with bboxes now, classification and semantic segmentation need an independent cls label
# We can make it also support classification and semantic segmentation by add or remove some dict keys there.
bboxes = label.pop('bboxes')
segments = label.pop('segments')
segments = label.pop('segments', [])
keypoints = label.pop('keypoints', None)
bbox_format = label.pop('bbox_format')
normalized = label.pop('normalized')
# NOTE: do NOT resample oriented boxes
segment_resamples = 100 if self.use_obb else 1000
if len(segments) > 0:
# list[np.array(1000, 2)] * num_samples
# (N, 1000, 2)
segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0)
else:
segments = np.zeros((0, segment_resamples, 2), dtype=np.float32)
label['instances'] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
return label
@ -182,7 +193,7 @@ class YOLODataset(BaseDataset):
value = values[i]
if k == 'img':
value = torch.stack(value, 0)
if k in ['masks', 'keypoints', 'bboxes', 'cls']:
if k in ['masks', 'keypoints', 'bboxes', 'cls', 'segments', 'obb']:
value = torch.cat(value, 0)
new_batch[k] = value
new_batch['batch_idx'] = list(new_batch['batch_idx'])

View file

@ -0,0 +1,288 @@
import itertools
import os
from glob import glob
from math import ceil
from pathlib import Path
import cv2
import numpy as np
from PIL import Image
from tqdm import tqdm
from ultralytics.data.utils import exif_size, img2label_paths
from ultralytics.utils.checks import check_requirements
check_requirements('shapely')
from shapely.geometry import Polygon
def bbox_iof(polygon1, bbox2, eps=1e-6):
"""
Calculate iofs between bbox1 and bbox2.
Args:
polygon1 (np.ndarray): Polygon coordinates, (n, 8).
bbox2 (np.ndarray): Bounding boxes, (n ,4).
"""
polygon1 = polygon1.reshape(-1, 4, 2)
lt_point = np.min(polygon1, axis=-2)
rb_point = np.max(polygon1, axis=-2)
bbox1 = np.concatenate([lt_point, rb_point], axis=-1)
lt = np.maximum(bbox1[:, None, :2], bbox2[..., :2])
rb = np.minimum(bbox1[:, None, 2:], bbox2[..., 2:])
wh = np.clip(rb - lt, 0, np.inf)
h_overlaps = wh[..., 0] * wh[..., 1]
l, t, r, b = (bbox2[..., i] for i in range(4))
polygon2 = np.stack([l, t, r, t, r, b, l, b], axis=-1).reshape(-1, 4, 2)
sg_polys1 = [Polygon(p) for p in polygon1]
sg_polys2 = [Polygon(p) for p in polygon2]
overlaps = np.zeros(h_overlaps.shape)
for p in zip(*np.nonzero(h_overlaps)):
overlaps[p] = sg_polys1[p[0]].intersection(sg_polys2[p[-1]]).area
unions = np.array([p.area for p in sg_polys1], dtype=np.float32)
unions = unions[..., None]
unions = np.clip(unions, eps, np.inf)
outputs = overlaps / unions
if outputs.ndim == 1:
outputs = outputs[..., None]
return outputs
def load_yolo_dota(data_root, split='train'):
"""Load DOTA dataset.
Args:
data_root (str): Data root.
split (str): The split data set, could be train or val.
Notes:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- train
- val
- labels
- train
- val
"""
assert split in ['train', 'val']
im_dir = os.path.join(data_root, f'images/{split}')
assert Path(im_dir).exists(), f"Can't find {im_dir}, please check your data root."
im_files = glob(os.path.join(data_root, f'images/{split}/*'))
lb_files = img2label_paths(im_files)
annos = []
for im_file, lb_file in zip(im_files, lb_files):
w, h = exif_size(Image.open(im_file))
with open(lb_file) as f:
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
lb = np.array(lb, dtype=np.float32)
annos.append(dict(ori_size=(h, w), label=lb, filepath=im_file))
return annos
def get_windows(im_size, crop_sizes=[1024], gaps=[200], im_rate_thr=0.6, eps=0.01):
"""
Get the coordinates of windows.
Args:
im_size (tuple): Original image size, (h, w).
crop_sizes (List(int)): Crop size of windows.
gaps (List(int)): Gap between each crops.
im_rate_thr (float): Threshold of windows areas divided by image ares.
"""
h, w = im_size
windows = []
for crop_size, gap in zip(crop_sizes, gaps):
assert crop_size > gap, f'invaild crop_size gap pair [{crop_size} {gap}]'
step = crop_size - gap
xn = 1 if w <= crop_size else ceil((w - crop_size) / step + 1)
xs = [step * i for i in range(xn)]
if len(xs) > 1 and xs[-1] + crop_size > w:
xs[-1] = w - crop_size
yn = 1 if h <= crop_size else ceil((h - crop_size) / step + 1)
ys = [step * i for i in range(yn)]
if len(ys) > 1 and ys[-1] + crop_size > h:
ys[-1] = h - crop_size
start = np.array(list(itertools.product(xs, ys)), dtype=np.int64)
stop = start + crop_size
windows.append(np.concatenate([start, stop], axis=1))
windows = np.concatenate(windows, axis=0)
im_in_wins = windows.copy()
im_in_wins[:, 0::2] = np.clip(im_in_wins[:, 0::2], 0, w)
im_in_wins[:, 1::2] = np.clip(im_in_wins[:, 1::2], 0, h)
im_areas = (im_in_wins[:, 2] - im_in_wins[:, 0]) * (im_in_wins[:, 3] - im_in_wins[:, 1])
win_areas = (windows[:, 2] - windows[:, 0]) * (windows[:, 3] - windows[:, 1])
im_rates = im_areas / win_areas
if not (im_rates > im_rate_thr).any():
max_rate = im_rates.max()
im_rates[abs(im_rates - max_rate) < eps] = 1
return windows[im_rates > im_rate_thr]
def get_window_obj(anno, windows, iof_thr=0.7):
"""Get objects for each window."""
h, w = anno['ori_size']
label = anno['label']
if len(label):
label[:, 1::2] *= w
label[:, 2::2] *= h
iofs = bbox_iof(label[:, 1:], windows)
# unnormalized and misaligned coordinates
window_anns = [(label[iofs[:, i] >= iof_thr]) for i in range(len(windows))]
else:
window_anns = [np.zeros((0, 9), dtype=np.float32) for _ in range(len(windows))]
return window_anns
def crop_and_save(anno, windows, window_objs, im_dir, lb_dir):
"""Crop images and save new labels.
Args:
anno (dict): Annotation dict, including `filepath`, `label`, `ori_size` as its keys.
windows (list): A list of windows coordinates.
window_objs (list): A list of labels inside each window.
im_dir (str): The output directory path of images.
lb_dir (str): The output directory path of labels.
Notes:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- train
- val
- labels
- train
- val
"""
im = cv2.imread(anno['filepath'])
name = Path(anno['filepath']).stem
for i, window in enumerate(windows):
x_start, y_start, x_stop, y_stop = window.tolist()
new_name = name + '__' + str(x_stop - x_start) + '__' + str(x_start) + '___' + str(y_start)
patch_im = im[y_start:y_stop, x_start:x_stop]
ph, pw = patch_im.shape[:2]
cv2.imwrite(os.path.join(im_dir, f'{new_name}.jpg'), patch_im)
label = window_objs[i]
if len(label) == 0:
continue
label[:, 1::2] -= x_start
label[:, 2::2] -= y_start
label[:, 1::2] /= pw
label[:, 2::2] /= ph
with open(os.path.join(lb_dir, f'{new_name}.txt'), 'w') as f:
for lb in label:
formatted_coords = ['{:.6g}'.format(coord) for coord in lb[1:]]
f.write(f"{int(lb[0])} {' '.join(formatted_coords)}\n")
def split_images_and_labels(data_root, save_dir, split='train', crop_sizes=[1024], gaps=[200]):
"""
Split both images and labels.
NOTES:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- split
- labels
- split
and the output directory structure is:
- save_dir
- images
- split
- labels
- split
"""
im_dir = Path(save_dir) / 'images' / split
im_dir.mkdir(parents=True, exist_ok=True)
lb_dir = Path(save_dir) / 'labels' / split
lb_dir.mkdir(parents=True, exist_ok=True)
annos = load_yolo_dota(data_root, split=split)
for anno in tqdm(annos, total=len(annos), desc=split):
windows = get_windows(anno['ori_size'], crop_sizes, gaps)
window_objs = get_window_obj(anno, windows)
crop_and_save(anno, windows, window_objs, str(im_dir), str(lb_dir))
def split_trainval(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
"""
Split train and val set of DOTA.
NOTES:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- train
- val
- labels
- train
- val
and the output directory structure is:
- save_dir
- images
- train
- val
- labels
- train
- val
"""
crop_sizes, gaps = [], []
for r in rates:
crop_sizes.append(int(crop_size / r))
gaps.append(int(gap / r))
for split in ['train', 'val']:
split_images_and_labels(data_root, save_dir, split, crop_sizes, gaps)
def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
"""
Split test set of DOTA, labels are not included within this set.
NOTES:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- test
and the output directory structure is:
- save_dir
- images
- test
"""
crop_sizes, gaps = [], []
for r in rates:
crop_sizes.append(int(crop_size / r))
gaps.append(int(gap / r))
save_dir = Path(save_dir) / 'images' / 'test'
save_dir.mkdir(parents=True, exist_ok=True)
im_dir = Path(os.path.join(data_root, 'images/test'))
assert im_dir.exists(), f"Can't find {str(im_dir)}, please check your data root."
im_files = glob(str(im_dir / '*'))
for im_file in tqdm(im_files, total=len(im_files), desc='test'):
w, h = exif_size(Image.open(im_file))
windows = get_windows((h, w), crop_sizes=crop_sizes, gaps=gaps)
im = cv2.imread(im_file)
name = Path(im_file).stem
for window in windows:
x_start, y_start, x_stop, y_stop = window.tolist()
new_name = (name + '__' + str(x_stop - x_start) + '__' + str(x_start) + '___' + str(y_start))
patch_im = im[y_start:y_stop, x_start:x_stop]
cv2.imwrite(os.path.join(str(save_dir), f'{new_name}.jpg'), patch_im)
if __name__ == '__main__':
split_trainval(
data_root='DOTAv2',
save_dir='DOTAv2-split',
)
split_test(
data_root='DOTAv2',
save_dir='DOTAv2-split',
)

View file

@ -516,10 +516,7 @@ class HUBDatasetStats:
else:
from ultralytics.data import YOLODataset
dataset = YOLODataset(img_path=self.data[split],
data=self.data,
use_segments=self.task == 'segment',
use_keypoints=self.task == 'pose')
dataset = YOLODataset(img_path=self.data[split], data=self.data, task=self.task)
x = np.array([
np.bincount(label['cls'].astype(int).flatten(), minlength=self.data['nc'])
for label in TQDM(dataset.labels, total=len(dataset), desc='Statistics')]) # shape(128x80)