Add Hindi हिन्दी and Arabic العربية Docs translations (#6428)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-11-18 21:51:47 +01:00 committed by GitHub
parent b6baae584c
commit 02bf8003a8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
337 changed files with 6584 additions and 777 deletions

View file

@ -41,7 +41,7 @@ YOLOv8의 훈련 모드를 선택하는 데는 몇 가지 설득력 있는 이
- **하이퍼파라미터 구성:** YAML 구성 파일이나 CLI 인수를 통해 하이퍼파라미터 수정 가능.
- **시각화 및 모니터링:** 훈련 지표의 실시간 추적 및 학습 과정의 시각화로 더 나은 인사이트 제공.
!!! "팁"
!!! Tip "팁"
* YOLOv8 데이터셋들은 첫 사용시 자동으로 다운로드됩니다, 예: `yolo train data=coco.yaml`
@ -49,7 +49,7 @@ YOLOv8의 훈련 모드를 선택하는 데는 몇 가지 설득력 있는 이
COCO128 데이터셋에서 YOLOv8n을 이미지 크기 640으로 100 에포크 동안 훈련합니다. 훈련 장치는 `device` 인수를 사용하여 지정할 수 있습니다. 인수를 전달하지 않으면 사용 가능한 경우 GPU `device=0`이, 아니면 `device=cpu`가 사용됩니다. 전체 훈련 인수 목록은 아래 Arguments 섹션을 참조하세요.
!!! 예제 "단일 GPU 및 CPU 훈련 예제"
!!! Example "단일 GPU 및 CPU 훈련 예제"
장치는 자동으로 결정됩니다. GPU가 사용 가능하면 사용되며, 그렇지 않으면 CPU에서 훈련이 시작됩니다.
@ -84,7 +84,7 @@ COCO128 데이터셋에서 YOLOv8n을 이미지 크기 640으로 100 에포크
다중 GPU 훈련을 통해 사용 가능한 하드웨어 리소스를 더 효율적으로 활용할 수 있습니다. 이 기능은 Python API와 명령행 인터페이스 모두를 통해 사용할 수 있습니다. 다중 GPU 훈련을 활성화하려면 사용하려는 GPU 장치 ID를 지정하세요.
!!! 예제 "다중 GPU 훈련 예제"
!!! Example "다중 GPU 훈련 예제"
2개의 GPU, CUDA 장치 0과 1로 훈련하려면 다음 명령을 사용하세요. 필요에 따라 추가 GPU로 확장하세요.
@ -113,7 +113,7 @@ Ultralytics YOLO 모델에 통합된 Apple M1 및 M2 칩들에 대한 지원을
Apple M1 및 M2 칩에서 훈련을 활성화하려면, 훈련 과정을 시작할 때 장치로 'mps'를 지정해야 합니다. 아래는 Python 및 명령행 인터페이스를 통해 이를 수행할 수 있는 예제입니다:
!!! 예제 "MPS 훈련 예제"
!!! Example "MPS 훈련 예제"
=== "Python"