Add Hindi हिन्दी and Arabic العربية Docs translations (#6428)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-11-18 21:51:47 +01:00 committed by GitHub
parent b6baae584c
commit 02bf8003a8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
337 changed files with 6584 additions and 777 deletions

View file

@ -32,7 +32,7 @@ keywords: Ultralytics, YOLOv8, 벤치마킹, 속도 프로파일링, 정확도
- **OpenVINO:** 인텔 하드웨어 최적화를 위함
- **CoreML, TensorFlow SavedModel, 그 외:** 다양한 배포 요구 사항을 위함.
!!! "팁"
!!! Tip "팁"
* CPU 속도 향상을 위해 ONNX 또는 OpenVINO로 내보내기.
* GPU 속도 향상을 위해 TensorRT로 내보내기.
@ -41,7 +41,7 @@ keywords: Ultralytics, YOLOv8, 벤치마킹, 속도 프로파일링, 정확도
YOLOv8n 벤치마킹을 ONNX, TensorRT 등 모든 지원되는 내보내기 형식에 대해 실행합니다. 완벽한 내보내기 인수 목록을 보려면 아래의 인수 섹션을 참조하세요.
!!! 예제 ""
!!! Example "예제"
=== "파이썬"

View file

@ -39,7 +39,7 @@ keywords: YOLO, YOLOv8, Ultralytics, 모델 내보내기, ONNX, TensorRT, CoreML
- **최적화된 추론:** 내보낸 모델들은 더 빠른 추론 시간을 위해 최적화되어 있습니다.
- **튜토리얼 비디오:** 원활한 내보내기 경험을 위한 심도 있는 가이드 및 튜토리얼.
!!! "팁"
!!! Tip "팁"
* CPU 속도 향상을 위해 ONNX 또는 OpenVINO로 내보내세요.
* GPU 속도 향상을 위해 TensorRT로 내보내세요.

View file

@ -92,7 +92,7 @@ Ultralytics YOLO 모델은 Python `Results` 객체의 리스트를 반환하거
YOLOv8은 아래 표에 표시된 바와 같이 추론을 위한 다양한 유형의 입력 소스를 처리할 수 있습니다. 소스에는 정적 이미지, 비디오 스트림, 다양한 데이터 형식이 포함됩니다. 표는 또한 각 소스를 'stream=True' ✅와 함께 스트리밍 모드에서 사용할 수 있는지 여부를 나타냅니다. 스트리밍 모드는 비디오나 라이브 스트림을 처리할 때 결과를 메모리에 모두 로드하는 대신 결과의 생성자를 만들어 유용하게 사용됩니다.
!!! "팁"
!!! Tip "팁"
긴 비디오나 큰 데이터 세트를 처리할 때 'stream=True'를 사용하여 효율적으로 메모리를 관리합니다. 'stream=False'일 때는 모든 프레임 또는 데이터 포인트에 대한 결과가 메모리에 저장되어, 입력이 크면 메모리 부족 오류를 빠르게 유발할 수 있습니다. 반면에, 'stream=True'는 생성자를 사용하여 현재 프레임 또는 데이터 포인트의 결과만 메모리에 유지하여 메모리 소비를 크게 줄이고 메모리 부족 문제를 방지합니다.

View file

@ -41,7 +41,7 @@ YOLOv8의 훈련 모드를 선택하는 데는 몇 가지 설득력 있는 이
- **하이퍼파라미터 구성:** YAML 구성 파일이나 CLI 인수를 통해 하이퍼파라미터 수정 가능.
- **시각화 및 모니터링:** 훈련 지표의 실시간 추적 및 학습 과정의 시각화로 더 나은 인사이트 제공.
!!! "팁"
!!! Tip "팁"
* YOLOv8 데이터셋들은 첫 사용시 자동으로 다운로드됩니다, 예: `yolo train data=coco.yaml`
@ -49,7 +49,7 @@ YOLOv8의 훈련 모드를 선택하는 데는 몇 가지 설득력 있는 이
COCO128 데이터셋에서 YOLOv8n을 이미지 크기 640으로 100 에포크 동안 훈련합니다. 훈련 장치는 `device` 인수를 사용하여 지정할 수 있습니다. 인수를 전달하지 않으면 사용 가능한 경우 GPU `device=0`이, 아니면 `device=cpu`가 사용됩니다. 전체 훈련 인수 목록은 아래 Arguments 섹션을 참조하세요.
!!! 예제 "단일 GPU 및 CPU 훈련 예제"
!!! Example "단일 GPU 및 CPU 훈련 예제"
장치는 자동으로 결정됩니다. GPU가 사용 가능하면 사용되며, 그렇지 않으면 CPU에서 훈련이 시작됩니다.
@ -84,7 +84,7 @@ COCO128 데이터셋에서 YOLOv8n을 이미지 크기 640으로 100 에포크
다중 GPU 훈련을 통해 사용 가능한 하드웨어 리소스를 더 효율적으로 활용할 수 있습니다. 이 기능은 Python API와 명령행 인터페이스 모두를 통해 사용할 수 있습니다. 다중 GPU 훈련을 활성화하려면 사용하려는 GPU 장치 ID를 지정하세요.
!!! 예제 "다중 GPU 훈련 예제"
!!! Example "다중 GPU 훈련 예제"
2개의 GPU, CUDA 장치 0과 1로 훈련하려면 다음 명령을 사용하세요. 필요에 따라 추가 GPU로 확장하세요.
@ -113,7 +113,7 @@ Ultralytics YOLO 모델에 통합된 Apple M1 및 M2 칩들에 대한 지원을
Apple M1 및 M2 칩에서 훈련을 활성화하려면, 훈련 과정을 시작할 때 장치로 'mps'를 지정해야 합니다. 아래는 Python 및 명령행 인터페이스를 통해 이를 수행할 수 있는 예제입니다:
!!! 예제 "MPS 훈련 예제"
!!! Example "MPS 훈련 예제"
=== "Python"

View file

@ -30,7 +30,7 @@ YOLOv8의 Val 모드가 제공하는 주목할 만한 기능들은 다음과 같
- **CLI 및 Python API:** 검증을 위해 명령 줄 인터페이스 또는 Python API 중에서 선택할 수 있습니다.
- **데이터 호환성:** 훈련 단계에서 사용된 데이터셋과 사용자 정의 데이터셋 모두와 원활하게 작동합니다.
!!! tip "팁"
!!! Tip "팁"
* YOLOv8 모델은 훈련 설정을 자동으로 기억하므로 `yolo val model=yolov8n.pt``model('yolov8n.pt').val()`만으로 같은 이미지 크기와 원본 데이터셋에서 쉽게 검증할 수 있습니다.
@ -38,7 +38,7 @@ YOLOv8의 Val 모드가 제공하는 주목할 만한 기능들은 다음과 같
COCO128 데이터셋에서 훈련된 YOLOv8n 모델의 정확도를 검증합니다. `모델`은 훈련 `데이터`와 인자를 모델 속성으로 유지하므로 인자가 필요 없습니다. 전체 내보내기 인자 목록은 아래의 인자 섹션을 참고하세요.
!!! example ""
!!! Example "예제"
=== "Python"