Add Hindi हिन्दी and Arabic العربية Docs translations (#6428)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
b6baae584c
commit
02bf8003a8
337 changed files with 6584 additions and 777 deletions
|
|
@ -19,7 +19,7 @@ The YOLO command line interface (CLI) allows for simple single-line commands wit
|
|||
<strong>Watch:</strong> Mastering Ultralytics YOLOv8: CLI & Python Usage and Live Inference
|
||||
</p>
|
||||
|
||||
!!! example
|
||||
!!! Example
|
||||
|
||||
=== "Syntax"
|
||||
|
||||
|
|
@ -80,7 +80,7 @@ Where:
|
|||
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml`
|
||||
GitHub [source](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/default.yaml).
|
||||
|
||||
!!! warning "Warning"
|
||||
!!! Warning "Warning"
|
||||
|
||||
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments.
|
||||
|
||||
|
|
@ -92,7 +92,7 @@ Where:
|
|||
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](cfg.md) page.
|
||||
|
||||
!!! example "Example"
|
||||
!!! Example "Example"
|
||||
|
||||
=== "Train"
|
||||
|
||||
|
|
@ -112,7 +112,7 @@ Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a ful
|
|||
|
||||
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! example "Example"
|
||||
!!! Example "Example"
|
||||
|
||||
=== "Official"
|
||||
|
||||
|
|
@ -132,7 +132,7 @@ Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need
|
|||
|
||||
Use a trained YOLOv8n model to run predictions on images.
|
||||
|
||||
!!! example "Example"
|
||||
!!! Example "Example"
|
||||
|
||||
=== "Official"
|
||||
|
||||
|
|
@ -152,7 +152,7 @@ Use a trained YOLOv8n model to run predictions on images.
|
|||
|
||||
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example "Example"
|
||||
!!! Example "Example"
|
||||
|
||||
=== "Official"
|
||||
|
||||
|
|
@ -190,7 +190,7 @@ Available YOLOv8 export formats are in the table below. You can export to any fo
|
|||
|
||||
Default arguments can be overridden by simply passing them as arguments in the CLI in `arg=value` pairs.
|
||||
|
||||
!!! tip ""
|
||||
!!! Tip ""
|
||||
|
||||
=== "Train"
|
||||
Train a detection model for `10 epochs` with `learning_rate` of `0.01`
|
||||
|
|
@ -218,7 +218,7 @@ To do this first create a copy of `default.yaml` in your current working dir wit
|
|||
|
||||
This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args, like `imgsz=320` in this example:
|
||||
|
||||
!!! example ""
|
||||
!!! Example ""
|
||||
|
||||
=== "CLI"
|
||||
```bash
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue