Add Hindi हिन्दी and Arabic العربية Docs translations (#6428)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-11-18 21:51:47 +01:00 committed by GitHub
parent b6baae584c
commit 02bf8003a8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
337 changed files with 6584 additions and 777 deletions

172
docs/ar/tasks/classify.md Normal file
View file

@ -0,0 +1,172 @@
---
comments: true
description: تعرّف على نماذج YOLOv8 Classify لتصنيف الصور. احصل على معلومات مفصلة حول قائمة النماذج المدرّبة مسبقًا وكيفية التدريب والتحقق والتنبؤ وتصدير النماذج.
keywords: Ultralytics، YOLOv8، تصنيف الصور، النماذج المدربة مسبقًا، YOLOv8n-cls، التدريب، التحقق، التنبؤ، تصدير النماذج
---
# تصنيف الصور
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418606-adf35c62-2e11-405d-84c6-b84e7d013804.png" alt="أمثلة على تصنيف الصور">
تعتبر عملية تصنيف الصور أبسط المهام الثلاثة وتنطوي على تصنيف صورة كاملة في إحدى الفئات المحددة سابقًا.
ناتج نموذج تصنيف الصور هو تسمية فئة واحدة ودرجة ثقة. يكون تصنيف الصور مفيدًا عندما تحتاج فقط إلى معرفة فئة الصورة ولا تحتاج إلى معرفة موقع الكائنات التابعة لتلك الفئة أو شكلها الدقيق.
!!! Tip "نصيحة"
تستخدم نماذج YOLOv8 Classify اللاحقة "-cls"، مثالًا "yolov8n-cls.pt" وتم تدريبها على [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
## [النماذج](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
تظهر هنا النماذج المدرّبة مسبقًا لـ YOLOv8 للتصنيف. تم تدريب نماذج الكشف والشعبة والموضع على مجموعة البيانات [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml)، بينما تم تدريب نماذج التصنيف مسبقًا على مجموعة البيانات [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
يتم تنزيل [النماذج](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) تلقائيًا من أحدث إصدار لـ Ultralytics [releases](https://github.com/ultralytics/assets/releases) عند الاستخدام الأول.
| النموذج | الحجم<br><sup>(بكسل) | دقة (أعلى 1)<br><sup>acc | دقة (أعلى 5)<br><sup>acc | سرعة التنفيذ<br><sup>ONNX للوحدة المركزية<br>(مللي ثانية) | سرعة التنفيذ<br><sup>A100 TensorRT<br>(مللي ثانية) | المعلمات<br><sup>(مليون) | FLOPs<br><sup>(مليار) لحجم 640 |
|----------------------------------------------------------------------------------------------|----------------------|--------------------------|--------------------------|-----------------------------------------------------------|----------------------------------------------------|--------------------------|--------------------------------|
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
- قيمة **acc** هي دقة النماذج على مجموعة بيانات التحقق [ImageNet](https://www.image-net.org/).
<br>لإعادة إنتاج ذلك، استخدم `yolo val classify data=path/to/ImageNet device=0`
- يتم حساب سرعة **Speed** بناءً على متوسط صور التحقق من ImageNet باستخدام [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/).
<br>لإعادة إنتاج ذلك، استخدم `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
## التدريب
قم بتدريب YOLOv8n-cls على مجموعة بيانات MNIST160 لمدة 100 دورة عند حجم الصورة 64 بكسل. للحصول على قائمة كاملة بالوسائط المتاحة، اطلع على صفحة [تكوين](../../usage/cfg.md).
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# تحميل نموذج
model = YOLO('yolov8n-cls.yaml') # إنشاء نموذج جديد من نموذج YAML
model = YOLO('yolov8n-cls.pt') # تحميل نموذج مدرّب مسبقًا (موصى به للتدريب)
model = YOLO('yolov8n-cls.yaml').load('yolov8n-cls.pt') # إنشاء من YAML ونقل الأوزان
# تدريب النموذج
results = model.train(data='mnist160', epochs=100, imgsz=64)
```
=== "CLI"
```bash
# إنشاء نموذج جديد من YAML وبدء التدريب من البداية
yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64
# بدء التدريب من نموذج مدرّب بصيغة pt
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
# إنشاء نموذج جديد من YAML ونقل الأوزان المدرّبة مسبقًا وبدء التدريب
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64
```
### تنسيق مجموعة البيانات
يمكن العثور على تنسيق مجموعة بيانات تصنيف YOLO بالتفصيل في [مرشد المجموعة](../../datasets/classify/index.md).
## التحقق
قم بتحديد دقة النموذج YOLOv8n-cls المدرّب على مجموعة بيانات MNIST160. لا يلزم تمرير أي وسيطة حيث يحتفظ `model` ببيانات التدريب والوسائط كسمات النموذج.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# تحميل نموذج
model = YOLO('yolov8n-cls.pt') # تحميل نموذج رسمي
model = YOLO('path/to/best.pt') # تحميل نموذج مخصص
# التحقق من النموذج
metrics = model.val() # لا تحتاج إلى وسائط، يتم تذكر مجموعة البيانات والإعدادات النموذج
metrics.top1 # دقة أعلى 1
metrics.top5 # دقة أعلى 5
```
=== "CLI"
```bash
yolo classify val model=yolov8n-cls.pt # تحقق من النموذج الرسمي
yolo classify val model=path/to/best.pt # تحقق من النموذج المخصص
```
## التنبؤ
استخدم نموذج YOLOv8n-cls المدرّب لتنفيذ تنبؤات على الصور.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# تحميل نموذج
model = YOLO('yolov8n-cls.pt') # تحميل نموذج رسمي
model = YOLO('path/to/best.pt') # تحميل نموذج مخصص
# تنبؤ باستخدام النموذج
results = model('https://ultralytics.com/images/bus.jpg') # تنبؤ على صورة
```
=== "CLI"
```bash
yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg' # تنبؤ باستخدام النموذج الرسمي
yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # تنبؤ باستخدام النموذج المخصص
```
راجع تفاصيل كاملة حول وضع `predict` في الصفحة [Predict](https://docs.ultralytics.com/modes/predict/).
## تصدير
قم بتصدير نموذج YOLOv8n-cls إلى تنسيق مختلف مثل ONNX، CoreML، وما إلى ذلك.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# تحميل نموذج
model = YOLO('yolov8n-cls.pt') # تحميل نموذج رسمي
model = YOLO('path/to/best.pt') # تحميل نموذج مدرّب مخصص
# تصدير النموذج
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-cls.pt format=onnx # تصدير النموذج الرسمي
yolo export model=path/to/best.pt format=onnx # تصدير نموذج مدرّب مخصص
```
تتوفر صيغ تصدير YOLOv8-cls في الجدول أدناه. يمكنك تنبؤ أو التحقق من الصحة مباشرةً على النماذج المصدر، أي "yolo predict model=yolov8n-cls.onnx". يتم عرض أمثلة لاستخدام النموذج الخاص بك بعد الانتهاء من التصدير.
| الصيغة | وسيطة الصيغة | النموذج | البيانات الوصفية | الوسيطات |
|--------------------------------------------------------------------|---------------|-------------------------------|------------------|-----------------------------------------------------|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | ✅ | - |
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | ✅ | `imgsz`, `optimize` |
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` | ✅ | `imgsz`, `half` |
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` |
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ | `imgsz`, `keras` |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ | `imgsz` |
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ | `imgsz`, `half`, `int8` |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ | `imgsz` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ | `imgsz` |
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-cls_ncnn_model/` | ✅ | `imgsz`, `half` |
راجع التفاصيل الكاملة حول `export` في الصفحة [Export](https://docs.ultralytics.com/modes/export/).

185
docs/ar/tasks/detect.md Normal file
View file

@ -0,0 +1,185 @@
---
comments: true
description: وثائق رسمية لـ YOLOv8 بواسطة Ultralytics. تعلم كيفية تدريب و التحقق من صحة و التنبؤ و تصدير النماذج بتنسيقات مختلفة. تتضمن إحصائيات الأداء التفصيلية.
keywords: YOLOv8, Ultralytics, التعرف على الكائنات, النماذج المدربة من قبل, التدريب, التحقق من الصحة, التنبؤ, تصدير النماذج, COCO, ImageNet, PyTorch, ONNX, CoreML
---
# التعرف على الكائنات
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418624-5785cb93-74c9-4541-9179-d5c6782d491a.png" alt="Beispiele für die Erkennung von Objekten">
Task التعرف على الكائنات هو عبارة عن تعرف على موقع و فئة الكائنات في صورة أو فيديو.
مخرجات جهاز الاستشعار هي مجموعة من مربعات تحيط بالكائنات في الصورة، مع تصنيف الفئة ودرجات وثقة لكل مربع. التعرف على الكائنات هو اختيار جيد عندما تحتاج إلى تحديد كائنات مهمة في مشهد، ولكنك لا تحتاج إلى معرفة بالضبط أين يكمن الكائن أو شكله الدقيق.
<p align="center">
<br>
<iframe width="720" height="405" src="https://www.youtube.com/embed/5ku7npMrW40?si=6HQO1dDXunV8gekh"
title="مشغل فيديو YouTube" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>شاهد:</strong> التعرف على الكائنات باستخدام نموذج Ultralytics YOLOv8 مع تدريب مسبق.
</p>
!!! Tip "تلميح"
نماذج YOLOv8 Detect هي النماذج الافتراضية YOLOv8، أي `yolov8n.pt` و هي مدربة مسبقًا على [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
## [النماذج](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
تُعرض هنا النماذج المدربة مسبقًا لـ YOLOv8 Detect. النماذج Detect و Segment و Pose معتمدة على مجموعة البيانات [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml)، بينما النماذج Classify معتمدة على مجموعة البيانات [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
تُقوم النماذج بالتنزيل تلقائيًا من أحدث [إصدار Ultralytics](https://github.com/ultralytics/assets/releases) عند الاستخدام لأول مرة.
| النموذج | الحجم<br><sup>(بكسل) | mAP<sup>val<br>50-95 | السرعة<br><sup>CPU ONNX<br>(مللي ثانية) | السرعة<br><sup>A100 TensorRT<br>(مللي ثانية) | الوزن<br><sup>(ميغا) | FLOPs<br><sup>(مليار) |
|--------------------------------------------------------------------------------------|----------------------|----------------------|-----------------------------------------|----------------------------------------------|----------------------|-----------------------|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- قيم mAP<sup>val</sup> تنطبق على مقياس نموذج واحد-مقياس واحد على مجموعة بيانات [COCO val2017](http://cocodataset.org).
<br>اعيد حسابها بواسطة `yolo val detect data=coco.yaml device=0`
- السرعةتمت متوسطة على صور COCO val باستخدام [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
instance.
<br>اعيد حسابها بواسطة `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
## تدريب
قم بتدريب YOLOv8n على مجموعة البيانات COCO128 لمدة 100 دورة على حجم صورة 640. للحصول على قائمة كاملة بالوسائط المتاحة انظر الصفحة [التكوين](../../usage/cfg.md).
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# قم بتحميل نموذج
model = YOLO('yolov8n.yaml') # بناء نموذج جديد من YAML
model = YOLO('yolov8n.pt') # قم بتحميل نموذج مدرب مسبقًا (موصى به للتدريب)
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # بناء من YAML و نقل الأوزان
# قم بتدريب النموذج
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# قم ببناء نموذج جديد من YAML وابدأ التدريب من الصفر
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640
# ابدأ التدريب من نموذج *.pt مدرب مسبقًا
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
# بناء نموذج جديد من YAML، ونقل الأوزان المدربة مسبقاً إلى النموذج وابدأ التدريب
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
```
### تنسيق مجموعة بيانات
يمكن العثور على تنسيق مجموعة بيانات التعرف على الكائنات بالتفصيل في [دليل مجموعة البيانات](../../datasets/detect/index.md). لتحويل مجموعة البيانات الحالية من تنسيقات أخرى (مثل COCO الخ) إلى تنسيق YOLO، يرجى استخدام أداة [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) المقدمة من Ultralytics.
## التحقق من الصحة
قم بتحقق من دقة النموذج المدرب مسبقًا YOLOv8n على مجموعة البيانات COCO128. ليس هناك حاجة إلى تمرير أي وسيطات حيث يحتفظ النموذج ببياناته التدريبية والوسيطات كسمات النموذج.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# قم بتحميل نموذج
model = YOLO('yolov8n.pt') # تحميل نموذج رسمي
model = YOLO('path/to/best.pt') # تحميل نموذج مخصص
# قم بالتحقق من النموذج
metrics = model.val() # لا حاجة لأي بيانات، يتذكر النموذج بيانات التدريب و الوسيطات
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # قائمة تحتوي map50-95 لكل فئة
```
=== "CLI"
```bash
yolo detect val model=yolov8n.pt # التحقق من النموذج الرسمي
yolo detect val model=path/to/best.pt # التحقق من النموذج المخصص
```
## التنبؤ
استخدم نموذج YOLOv8n المدرب مسبقًا لتشغيل التنبؤات على الصور.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# قم بتحميل نموذج
model = YOLO('yolov8n.pt') # قم بتحميل نموذج رسمي
model = YOLO('path/to/best.pt') # قم بتحميل نموذج مخصص
# أجرِ التنبؤ باستخدام النموذج
results = model('https://ultralytics.com/images/bus.jpg') # التنبؤ على صورة
```
=== "CLI"
```bash
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # التنبؤ باستخدام النموذج الرسمي
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # التنبؤ بالنموذج المخصص
```
انظر تفاصيل وضع الـ `predict` الكامل في صفحة [Predict](https://docs.ultralytics.com/modes/predict/).
## تصدير
قم بتصدير نموذج YOLOv8n إلى تنسيق مختلف مثل ONNX، CoreML وغيرها.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# قم بتحميل نموذج
model = YOLO('yolov8n.pt') # تحميل نموذج رسمي
model = YOLO('path/to/best.pt') # تحميل نموذج مدرب مخصص
# قم بتصدير النموذج
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n.pt format=onnx # تصدير النموذج الرسمي
yolo export model=path/to/best.pt format=onnx # تصدير النموذج المدرب مخصص
```
التنسيقات المدعومة لتصدير YOLOv8 مدرجة في الجدول أدناه. يمكنك التنبؤ أو التحقق من صحة النماذج المصدرة مباشرة، على سبيل المثال `yolo predict model=yolov8n.onnx`. سيتم عرض أمثلة استخدام لنموذجك بعد اكتمال التصدير.
| الشكل | مسافة `format` | النموذج | بيانات الوصف | وسيطات |
|--------------------------------------------------------------------|----------------|---------------------------|--------------|-----------------------------------------------------|
| [PyTorch](https://pytorch.org/) | - أو | `yolov8n.pt` | ✅ | - |
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz`, `optimize` |
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz`, `half`, `int8` |
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` |
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz`, `keras`, `int8` |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ | `imgsz` |
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz`, `half`, `int8` |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` |
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` |
انظر تفاصيل كاملة للـ `export` في صفحة [Export](https://docs.ultralytics.com/modes/export/).

55
docs/ar/tasks/index.md Normal file
View file

@ -0,0 +1,55 @@
---
comments: true
description: تعرّف على المهام الأساسية لتقنية YOLOv8 للرؤية الحاسوبية والتي تشمل الكشف، التجزئة، التصنيف وتقدير الوضعية. تعرف على استخداماتها في مشاريع الذكاء الاصطناعي الخاصة بك.
keywords: Ultralytics، YOLOv8، الكشف، التجزئة، التصنيف، تقدير الوضعية، الإطار الذكي للذكاء الاصطناعي، المهام الرؤية الحاسوبية
---
# مهام Ultralytics YOLOv8
<br>
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="مهام Ultralytics YOLOv8 المدعومة">
YOLOv8 هو إطار ذكاء اصطناعي يدعم عدة **مهام** للرؤية الحاسوبية. يمكن استخدام الإطار لأداء [الكشف](detect.md)، [التجزئة](segment.md)، [التصنيف](classify.md)، و[تقدير الوضعية](pose.md). كل من هذه المهام لها هدف مختلف واستخدام محدد.
!!! Note
🚧 يجري بناء وثائقنا متعددة اللغات حاليًا، ونعمل جاهدين على تحسينها. شكرًا لصبرك! 🙏
<p align="center">
<br>
<iframe width="720" height="405" src="https://www.youtube.com/embed/NAs-cfq9BDw"
title="مشغل فيديو يوتيوب" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>شاهد:</strong> استكشف مهام Ultralytics YOLO: كشف الكائنات، التجزئة، التتبع وتقدير الوضعية.
</p>
## [الكشف](detect.md)
الكشف هو المهمة الأساسية المدعومة بواسطة YOLOv8. يتضمن الكشف اكتشاف الكائنات في صورة أو إطار فيديو ورسم مربعات محيطة حولها. يتم تصنيف الكائنات المكتشفة إلى فئات مختلفة استنادًا إلى ميزاتها. يمكن لـ YOLOv8 اكتشاف أكثر من كائن واحد في صورة أو إطار فيديو واحد بدقة وسرعة عالية.
[أمثلة للكشف](detect.md){ .md-button .md-button--primary}
## [التجزئة](segment.md)
التجزئة هي مهمة تتضمن تقسيم صورة إلى مناطق مختلفة استنادًا إلى محتوى الصورة. يتم تعيين علامة لكل منطقة استنادًا إلى محتواها. تعتبر هذه المهمة مفيدة في تطبيقات مثل تجزئة الصور وتصوير الطبية. يستخدم YOLOv8 نسخة معدلة من هندسة U-Net لأداء التجزئة.
[أمثلة للتجزئة](segment.md){ .md-button .md-button--primary}
## [التصنيف](classify.md)
التصنيف هو مهمة تتضمن تصنيف صورة إلى فئات مختلفة. يمكن استخدام YOLOv8 لتصنيف الصور استنادًا إلى محتواها. يستخدم نسخة معدلة من هندسة EfficientNet لأداء التصنيف.
[أمثلة للتصنيف](classify.md){ .md-button .md-button--primary}
## [تقدير الوضعية](pose.md)
تقدير الوضعية/النقاط الرئيسية هو مهمة تتضمن اكتشاف نقاط محددة في صورة أو إطار فيديو. يُشار إلى هذه النقاط بمصطلح النقاط الرئيسية وتُستخدم لتتبع الحركة أو تقدير الوضعية. يمكن لـ YOLOv8 اكتشاف النقاط الرئيسية في صورة أو إطار فيديو بدقة وسرعة عالية.
[أمثلة لتقدير الوضعية](pose.md){ .md-button .md-button--primary}
## الاستنتاج
يدعم YOLOv8 مهام متعددة، بما في ذلك الكشف، التجزئة، التصنيف، وكشف النقاط الرئيسية. لكل من هذه المهام أهداف واستخدامات مختلفة. عن طريق فهم الاختلافات بين هذه المهام، يمكنك اختيار المهمة المناسبة لتطبيق الرؤية الحاسوبية الخاص بك.

186
docs/ar/tasks/pose.md Normal file
View file

@ -0,0 +1,186 @@
---
comments: true
description: تعرّف على كيفية استخدام Ultralytics YOLOv8 لمهام تقدير الوضعية. اعثر على نماذج مدرّبة مسبقًا، وتعلم كيفية التدريب والتحقق والتنبؤ وتصدير نموذجك الخاص.
keywords: Ultralytics، YOLO، YOLOv8، تقدير الوضعية ، كشف نقاط المفاتيح ، كشف الكائنات ، نماذج مدرّبة مسبقًا ، تعلم الآلة ، الذكاء الاصطناعي
---
# تقدير الوضعية
تقدير الوضعية هو مهمة تنطوي على تحديد موقع نقاط محددة في الصورة ، وعادةً ما يشار إليها بنقاط الوضوح. يمكن أن تمثل نقاط الوضوح أجزاءً مختلفةً من الكائن مثل المفاصل أو العلامات المميزة أو الميزات البارزة الأخرى. عادةً ما يتم تمثيل مواقع نقاط الوضوح كمجموعة من الإحداثيات 2D `[x ، y]` أو 3D `[x ، y ، visible]`.
يكون ناتج نموذج تقدير الوضعية مجموعة من النقاط التي تمثل نقاط الوضوح على كائن في الصورة ، عادةً مع نقاط الثقة لكل نقطة. تقدير الوضعية هو خيار جيد عندما تحتاج إلى تحديد أجزاء محددة من كائن في مشهد، وموقعها بالنسبة لبعضها البعض.
<p align="center">
<br>
<iframe width="720" height="405" src="https://www.youtube.com/embed/Y28xXQmju64?si=pCY4ZwejZFu6Z4kZ"
title="مشغل فيديو YouTube" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>شاهد:</strong> تقدير الوضعية مع Ultralytics YOLOv8.
</p>
!!! Tip "نصيحة"
النماذج التي تحتوي على البادئة "-pose" تستخدم لنماذج YOLOv8 pose ، على سبيل المثال `yolov8n-pose.pt`. هذه النماذج مدربة على [مجموعة بيانات نقاط الوضوح COCO]("https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml") وهي مناسبة لمجموعة متنوعة من مهام تقدير الوضعية.
## [النماذج]("https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8")
تعرض نماذج مدرّبة مسبقًا لـ YOLOv8 التي تستخدم لتقدير الوضعية هنا. النماذج للكشف والشريحة والوضعية يتم تدريبها على [مجموعة بيانات COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml)، بينما تتم تدريب نماذج التصنيف على مجموعة بيانات ImageNet.
يتم تنزيل النماذج من [آخر إصدار Ultralytics]("https://github.com/ultralytics/assets/releases") تلقائيًا عند استخدامها لأول مرة.
| النموذج | الحجم (بالبكسل) | mAP<sup>الوضعية 50-95 | mAP<sup>الوضعية 50 | سرعة<sup>الوحدة المركزية ONNX<sup>(ms) | سرعة<sup>A100 TensorRT<sup>(ms) | المعلمات (مليون) | FLOPs (بالمليار) |
|------------------------------------------------------------------------------------------------------|-----------------|-----------------------|--------------------|----------------------------------------|---------------------------------|------------------|------------------|
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
- تعتبر القيم **mAP<sup>val</sup>** لنموذج واحد ومقياس واحد فقط على [COCO Keypoints val2017](http://cocodataset.org)
مجموعة البيانات.
<br>يمكن إعادة إنتاجه بواسطة `يولو val pose data=coco-pose.yaml device=0`
- يتم حساب **السرعة** من خلال متوسط صور COCO val باستخدام [المروحة الحرارية Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
مثيل.
<br>يمكن إعادة إنتاجه بواسطة `يولو val pose data=coco8-pose.yaml batch=1 device=0|cpu`
## التدريب
يتم تدريب نموذج YOLOv8-pose على مجموعة بيانات COCO128-pose.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# تحميل النموذج
model = YOLO('yolov8n-pose.yaml') # بناء نموذج جديد من ملف YAML
model = YOLO('yolov8n-pose.pt') # تحميل نموذج مدرّب مسبقًا (موصى به للتدريب)
model = YOLO('yolov8n-pose.yaml').load('yolov8n-pose.pt') # بناء نموذج من YAML ونقل الوزن
# تدريب النموذج
results = model.train(data='coco8-pose.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# بناء نموذج جديد من YAML وبدء التدريب من البداية.
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640
# البدء في التدريب من نموذج مدرب مسبقًا *.pt
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
# بناء نموذج جديد من YAML ، ونقل الأوزان المدرّبة مسبقًا إليه ، والبدء في التدريب.
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640
```
### تنسيق مجموعة البيانات
يمكن العثور على تنسيق مجموعات بيانات نقاط الوضوح YOLO في [دليل المجموعة البيانات](../../datasets/pose/index.md). لتحويل مجموعة البيانات الحالية التي لديك من تنسيقات أخرى (مثل COCO إلخ) إلى تنسيق YOLO ، يرجى استخدام أداة [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) من Ultralytics.
## التحقق من الصحة
تحقق من دقة نموذج YOLOv8n-pose المدرّب على مجموعة بيانات COCO128-pose. لا يلزم تمرير سبب ما كوسيط إلى `model`
عند استدعاء.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# تحميل النموذج
model = YOLO('yolov8n-pose.pt') # تحميل نموذج رسمي
model = YOLO('path/to/best.pt') # تحميل نموذج مخصص
# التحقق من النموذج
metrics = model.val() # لا يوجد حاجة لأي سبب، يتذكر النموذج البيانات والوسائط كمجالات للنموذج
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # قائمة تحتوي على map50-95 لكل فئة
```
=== "CLI"
```bash
yolo pose val model=yolov8n-pose.pt # التحقق من النموذج الرسمي
yolo pose val model=path/to/best.pt # التحقق من النموذج المخصص
```
## التنبؤ
استخدم نموذج YOLOv8n-pose المدرّب لتشغيل توقعات على الصور.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# تحميل النموذج
model = YOLO('yolov8n-pose.pt') # تحميل نموذج رسمي
model = YOLO('path/to/best.pt') # تحميل نموذج مخصص
# التنبؤ باستخدام النموذج
results = model('https://ultralytics.com/images/bus.jpg') # التنبؤ بصورة
```
=== "CLI"
```bash
yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg' # التنبؤ باستخدام النموذج الرسمي
yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # التنبؤ باستخدام النموذج المخصص
```
انظر تفاصيل `predict` كاملة في [صفحة التنبؤ](https://docs.ultralytics.com/modes/predict/).
## التصدير
قم بتصدير نموذج YOLOv8n-pose إلى تنسيق مختلف مثل ONNX، CoreML، الخ.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# تحميل النموذج
model = YOLO('yolov8n-pose.pt') # تحميل نموذج رسمي
model = YOLO('path/to/best.pt') # تحميل نموذج مدرب مخصص
# تصدير النموذج
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-pose.pt format=onnx # تصدير نموذج رسمي
yolo export model=path/to/best.pt format=onnx # تصدير نموذج مخصص
```
تتوفر تنسيقات تصدير YOLOv8-pose في الجدول أدناه. يمكنك التنبؤ أو التحقق مباشرةً على النماذج المصدرة ، على سبيل المثال `yolo predict model=yolov8n-pose.onnx`. توجد أمثلة استخدام متاحة لنموذجك بعد اكتمال عملية التصدير.
| تنسيق | إجراء `format` | النموذج | البيانات الوصفية | الوسائط |
|--------------------------------------------------------------------|----------------|--------------------------------|------------------|-----------------------------------------------------|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-pose.pt` | ✅ | - |
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-pose.torchscript` | ✅ | `imgsz`, `optimize` |
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-pose.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-pose_openvino_model/` | ✅ | `imgsz`, `half` |
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-pose.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-pose.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` |
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-pose_saved_model/` | ✅ | `imgsz`, `keras` |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-pose.pb` | ❌ | `imgsz` |
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-pose.tflite` | ✅ | `imgsz`, `half`, `int8` |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-pose_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-pose_web_model/` | ✅ | `imgsz` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-pose_paddle_model/` | ✅ | `imgsz` |
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-pose_ncnn_model/` | ✅ | `imgsz`, `half` |
انظر تفاصيل `export` كاملة في [صفحة التصدير](https://docs.ultralytics.com/modes/export/).

189
docs/ar/tasks/segment.md Normal file
View file

@ -0,0 +1,189 @@
---
comments: true
description: تعلم كيفية استخدام نماذج فصل الأشكال الفردية مع Ultralytics YOLO. تعليمات حول التدريب والتحقق من الصحة وتوقع الصورة وتصدير النموذج.
keywords: yolov8 ، فصل الأشكال الفردية ، Ultralytics ، مجموعة بيانات COCO ، تجزئة الصورة ، كشف الكائنات ، تدريب النموذج ، التحقق من صحة النموذج ، توقع الصورة ، تصدير النموذج
---
# فصل الأشكال الفردية
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418644-7df320b8-098d-47f1-85c5-26604d761286.png" alt="أمثلة على فصل الأشكال الفردية">
يذهب فصل الأشكال الفردية خطوة أبعد من كشف الكائنات وينطوي على تحديد الكائنات الفردية في صورة وتجزيئها عن بقية الصورة.
ناتج نموذج فصل الأشكال الفردية هو مجموعة من الأقنعة أو الحدود التي تحدد كل كائن في الصورة ، جنبًا إلى جنب مع تصنيف الصنف ونقاط الثقة لكل كائن. يكون فصل الأشكال الفردية مفيدًا عندما تحتاج إلى معرفة ليس فقط أين توجد الكائنات في الصورة ، ولكن أيضًا ما هو شكلها الدقيق.
<p align="center">
<br>
<iframe width="720" height="405" src="https://www.youtube.com/embed/o4Zd-IeMlSY?si=37nusCzDTd74Obsp"
title="مشغل فيديو YouTube" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>المشاهدة:</strong> تشغيل فصل الأشكال مع نموذج Ultralytics YOLOv8 مدرب مسبقًا باستخدام Python.
</p>
!!! Tip "نصيحة"
تستخدم نماذج YOLOv8 Seg اللاحقة `-seg`، أي `yolov8n-seg.pt` وتكون مدربة مسبقًا على [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
## [النماذج](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
تُعرض هنا النماذج الجاهزة المدربة مسبقًا لـ YOLOv8 Segment. يتم تدريب نماذج الكشف والتجزيء والمواقف على مجموعة البيانات [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) ، بينما تدرب نماذج التصنيف على مجموعة البيانات [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
تتم تنزيل [النماذج](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) تلقائيًا من [الإصدار](https://github.com/ultralytics/assets/releases) الأخير لـ Ultralytics عند أول استخدام.
| النموذج | الحجم<br><sup>بكسل | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | السرعة<br><sup>CPU ONNX<br>(مللي ثانية) | السرعة<br><sup>A100 TensorRT<br>(مللي ثانية) | المعلمات<br><sup>(مليون) | FLOPs<br><sup>(مليار) |
|----------------------------------------------------------------------------------------------|--------------------|----------------------|-----------------------|-----------------------------------------|----------------------------------------------|--------------------------|-----------------------|
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- تُستخدم قيم **mAP<sup>val</sup>** لنموذج واحد وحجم واحد على مجموعة بيانات [COCO val2017](http://cocodataset.org).
<br>يمكن إعادة إنتاجها باستخدام `yolo val segment data=coco.yaml device=0`
- **تُحسب السرعة** كمتوسط على صور COCO val باستخدام [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
instance.
<br>يمكن إعادة إنتاجها باستخدام `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
## التدريب
قم بتدريب YOLOv8n-seg على مجموعة بيانات COCO128-seg لمدة 100 دورة عند حجم صورة 640. للحصول على قائمة كاملة بالوسائط المتاحة ، راجع صفحة [التكوين](../../usage/cfg.md).
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# قم بتحميل النموذج
model = YOLO('yolov8n-seg.yaml') # قم ببناء نموذج جديد من ملف YAML
model = YOLO('yolov8n-seg.pt') # قم بتحميل نموذج مدرب مسبقًا (موصى به للتدريب)
model = YOLO('yolov8n-seg.yaml').load('yolov8n.pt') # قم ببنائه من YAML ونقل الوزن
# قم بتدريب النموذج
results = model.train(data='coco128-seg.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# قم ببناء نموذج جديد من ملف YAML وبدء التدريب من البداية
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640
# قم ببدء التدريب من نموذج *.pt مدرب مسبقًا
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
# قم ببناء نموذج جديد من YAML ونقل الأوزان المدربة مسبَقًا إليه وابدأ التدريب
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640
```
### تنسيق مجموعة البيانات
يمكن العثور على تنسيق مجموعة بيانات تجزيء YOLO بالتفصيل في [دليل مجموعة البيانات](../../datasets/segment/index.md). لتحويل مجموعة البيانات الحالية التي تتبع تنسيقات أخرى (مثل COCO إلخ) إلى تنسيق YOLO ، يُرجى استخدام أداة [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) من Ultralytics.
## التحقق من الصحة
قم بالتحقق من دقة نموذج YOLOv8n-seg المدرب على مجموعة بيانات COCO128-seg. لا حاجة لتمرير أي وسيطة كما يحتفظ النموذج ببيانات "تدريبه" والوسيطات كسمات النموذج.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# قم بتحميل النموذج
model = YOLO('yolov8n-seg.pt') # قم بتحميل نموذج رسمي
model = YOLO('path/to/best.pt') # قم بتحميل نموذج مخصص
# قم بالتحقق من النموذج
metrics = model.val() # لا حاجة إلى أي وسيطة ، يتذكر النموذج بيانات التدريب والوسيطات كسمات النموذج
metrics.box.map # map50-95(B)
metrics.box.map50 # map50(B)
metrics.box.map75 # map75(B)
metrics.box.maps # قائمة تحتوي على map50-95(B) لكل فئة
metrics.seg.map # map50-95(M)
metrics.seg.map50 # map50(M)
metrics.seg.map75 # map75(M)
metrics.seg.maps # قائمة تحتوي على map50-95(M) لكل فئة
```
=== "CLI"
```bash
yolo segment val model=yolov8n-seg.pt # التحقق من النموذج الرسمي
yolo segment val model=path/to/best.pt # التحقق من النموذج المخصص
```
## التنبؤ
استخدم نموذج YOLOv8n-seg المدرب للقيام بالتنبؤات على الصور.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# قم بتحميل النموذج
model = YOLO('yolov8n-seg.pt') # قم بتحميل نموذج رسمي
model = YOLO('path/to/best.pt') # قم بتحميل نموذج مخصص
# التنبؤ باستخدام النموذج
results = model('https://ultralytics.com/images/bus.jpg') # التنبؤ على صورة
```
=== "CLI"
```bash
yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg' # التنبؤ باستخدام النموذج الرسمي
yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # التنبؤ باستخدام النموذج المخصص
```
انظر تفاصيل "التنبؤ" الكاملة في [الصفحة](https://docs.ultralytics.com/modes/predict/).
## التصدير
قم بتصدير نموذج YOLOv8n-seg إلى تنسيق مختلف مثل ONNX و CoreML وما إلى ذلك.
!!! Example "مثال"
=== "Python"
```python
from ultralytics import YOLO
# قم بتحميل النموذج
model = YOLO('yolov8n-seg.pt') # قم بتحميل نموذج رسمي
model = YOLO('path/to/best.pt') # قم بتحميل نموذج مدرب مخصص
# قم بتصدير النموذج
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-seg.pt format=onnx # تصدير نموذج رسمي
yolo export model=path/to/best.pt format=onnx # تصدير نموذج مدرب مخصص
```
صيغ تصدير YOLOv8-seg المتاحة في الجدول أدناه. يمكنك التنبؤ أو التحقق من صحة الموديل المصدر بشكل مباشر ، أي `yolo predict model=yolov8n-seg.onnx`. يتم عرض أمثلة عن الاستخدام لنموذجك بعد اكتمال التصدير.
| الصيغة | `format` Argument | النموذج | التعليمات | الخيارات |
|--------------------------------------------------------------------|-------------------|-------------------------------|-----------|-------------------------------------------------|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-seg.pt` | ✅ | - |
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-seg.torchscript` | ✅ | `الحجم ، الأمان` |
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-seg.onnx` | ✅ | `الحجم ، half ، dynamic ، simplify ، opset` |
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-seg_openvino_model/` | ✅ | `الحجم ، half` |
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-seg.engine` | ✅ | `الحجم ، half ، dynamic ، simplify ، workspace` |
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-seg.mlpackage` | ✅ | `الحجم ، half ، int8 ، nms` |
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-seg_saved_model/` | ✅ | `الحجم ، keras` |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-seg.pb` | ❌ | `الحجم` |
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-seg.tflite` | ✅ | `الحجم ، half ، int8` |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-seg_edgetpu.tflite` | ✅ | `الحجم` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` | ✅ | `الحجم` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` | ✅ | `الحجم` |
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-seg_ncnn_model/` | ✅ | `الحجم ، half` |
انظر تفاصيل "التصدير" الكاملة في [الصفحة](https://docs.ultralytics.com/modes/export/).